

Grundlagen der Elektrotechnik, Labor Sommersemester 2014

Übung 1: Messung an linearen Gleichstromnetzwerken

Übungsdatum: 31.03.2014

Gruppe: 127p

Protokollführer: Flora Feldner

Laborteilnehmer:

- 1. Stefan Jodl
- 2. Markus Resch
- 3. Markus Katzgraber
 - 4. Flora Feldner

Laborleiter: Werner Renhart

Betreuer: Dominik Hilber

Graz, am 26. April 2015

1 Nachweis des ohmschen Gesetzes, spannungsrichtige und stromrichtige Messung

1.1 Aufgabenstellung

Mithilfe einer geeigneten Messschaltung sollen an einem gegebenen ohmschen Widerstand drei Messungen von Strom und Spannung, jeweils einmal strom- und einmal spannungsrichtig durchgeführt werden, wobei die Quellspannung für jede Messung neu zu wählen ist. Dabei ist zu entscheiden, welches der zur Verfügung stehenden Geräte aufgrund seiner Eigenschaften als Voltmeter, und welches als Amperemeter zum Einsatz kommen soll.

Anschließend soll aus den Messergebnissen der Widerstandswert berechnet werden und ein Strom/Spannungs-Diagramm (U = f(I)) gezeichnet werden, dessen Kennlinienverlauf zuletzt diskutiert werden soll.

1.2 Schaltung

Abbildung 1 zeigt die Schaltung zur stromrichtigen Messung an einem unbekannten ohmschen Widerstand R_2 . Die Schaltung wird von einer Spannungsquelle mit der Spannung U_q gespeist.

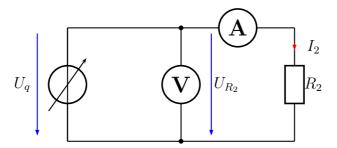


Abbildung 1: Schaltung zur stromrichtigen Messung an einem ohmschen Widerstand.

Abbildung 2 zeigt die Schaltung zur spannungsrichtigen Messung an einem unbekannten ohmschen Widerstand R_2 . Die Schaltung wird von einer Spannungsquelle mit der Spannung U_q gespeist.

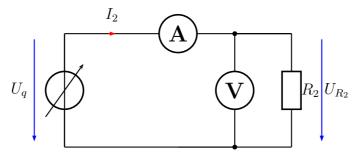


Abbildung 2: Schaltung zur spannungsrichtigen Messung an einem ohmschen Widerstand.

1.3 Tabellen

Tabelle 1 zeigt die an der Gleichspannungsquelle eingestellten Werte für die Spannung U_q sowie die gemessenen Werte für Spannung U_{R_2} und Strom I_2 mitsamt den jeweiligen Messbereichen für die die stromrichtig durchgeführten Messungen. Tabelle 2 zeigt analog dazu die Messergebnisse für die spannungsrichtig durchgeführten Messungen.

Die errechneten Werte für den Widerstand R_2 sind anschließend an die Messwerte in den Tabellen angegeben.

Stromrichtige Messung

Eingest	ellt	Gemessen			Berechnet	
Messung	U_q	I_2	MBA	U_{R_2}	MBV	R_2
Nr.	V	mA	mA	V	V	$k\Omega$
1	3,00	2,95	3	2,90	3	0,983
2	6,00	6,00	12	5,95	10	0,992
3	9,00	9,00	12	8,95	10	0,994

Tabelle 1: Eingestellte, gemessene und berechnete Werte.

Spannungsrichtige Messung

Eingest	ellt	Gemessen			Berechnet	
Messung	U_q	I_2	MBA	U_{R_2}	MBV	R_2
Nr.	V	mA	mA	V	V	$k\Omega$
1	3,00	2,95	3	2,95	3	1,000
2	6,00	6,00	12	5,97	10	0,995
3	9,00	9,00	12	8,95	10	0,994

Tabelle 2: Eingestellte, gemessene und berechnete Werte.

1.4 Formeln

Der Widerstandswert R_2 kann mithilfe des Ohm'schen Gesetzes aus den gemessenen Werten von Strom I_2 und Spannung U_{R_2} wie folgt berechnet werden:

$$R_2 = \frac{U_{R_2}}{I_2} \,. \tag{1}$$

1.5 Berechnungsbeispiele

Für eine an der Spannungsquell eingestellte Gleichspannung von 9V (Nr. 3) erhält man den Widerstandswert R_2 aus den zugehörigen Messwerten aus Tabelle 1 zu

$$R_2 = \frac{U_{R_2}}{I_2} \cdot = \frac{8,95 \,\text{V}}{9,00 \cdot 10^{-3} \,\text{A}} = 0,994 \,\text{k}\Omega \,.$$
 (2)

1.6 Diagramme

Die geforderten Diagramme befinden sich auf Millimeterpapier gezeichnet im Anhang.

Diagramm 1 zeigt ein U/I-Diagramm (Spannung als Funktion des Stromes) mit den Messpunkten der stromrichtigen Messungen.

Diagramm 2 zeigt analog dazu die Messpunkte der spannungsrichtigen Messungen.

In beiden Diagrammen wurden die Messpunkte mit einer Gerade verbunden (Linearität des ohmschen Gesetzes).

1.7 Geräteverzeichnis

- 1 Stk. Ohmscher Widerstand 1 k Ω .
- 1 Stk. Analoges Messgerät Unigor 1n (Type 226231).
- 1 Stk. Analoges Messgerät Unigor 3n (Type 226233).
- 1 Stk. IGTE Laborbox (Stecktafel mit integrierter Strom- und Spannungsquelle) Übung 1

1.8 Diskussion

Vor Inbetriebnahme der Versuchsschaltung war die Frage zu klären, welches der beiden analogen Messgeräte (Unigor 1n und Unigor 3n) als Voltmeter, und welches als Amperemeter fungieren sollte. Ein ideales Voltmeter hat einen unendlich hohen Innenwiderstand, sodass keine Stromteilung stattfindet, und ein ideales Amperemeter hat keinen Innenwiderstand, sodass kein Spannungsabfall stattfindet. Da solche Zustände in der Realität nicht möglich sind, vergleichen wir die Innenwiderstände für die Spannungs- und Strommessung laut Datenblatt, um möglichst nahe an ideale Zustände heranzukommen:

Unigor 1n:

- MBV $12V \longrightarrow 40k\Omega$ Innenwiderstand
- MBA $12\text{mA} \longrightarrow 0.03V$ Spannungsabfall

Unigor 3n:

- MBV $10V \longrightarrow 316k\Omega$ Innenwiderstand
- MBA $10\text{mA} \longrightarrow 0.17V$ Spannungsabfall

Aufgrund dieser Datenlage haben wir uns entschieden, das Unigor 3n als Voltmeter, und das Unigor 1n als Amperemeter zu verwenden.

Auch war die Eignung von strom- versus spannungsrichtiger Messung in Abhängigkeit des Widerstandswertes zu erörtern:

Für niederohmige Widerstände ist die spannungsrichtige Messung zu bevorzugen, da aufgrund des starken Unterschiedes zwischen dem zu messenden Widerstand und dem Innenwiderstand des Voltmeters beinahe kein Strom durch das Voltmeter fließt.

Für hochohmige Widerstände ist die stromrichtige Messung zu bevorzugen, da aufgrund des vergleichsweise niedrigen Innenwiderstands des Amperemeters dort in Relation beinahe kein Spannungsabfall stattfindet.

Anmerkung zu den Messergebnissen: In den Tabellen 1 und 2 spiegelt sich aufgrund eines

Messfehlers bei den Messpunkten 1 nicht die erwartete Verfälschung durch die stromrichtige Messung nieder: Bei einem niederohmigen Widerstand mit $1k\Omega$ sollte der Spannungsabfall im Amperemeter ausreichend hoch sein, um die Spannungsmessung zu verfälschen, und somit einen zu hohen Widerstandswert zu errechnen. Passiert ist mit diesen Messergebnissen jedoch das genaue Gegenteil: der berechnete Widerstandswert bei der spannungsrichtigen Messung ist höher als jener der stromrichtigen Messung.

Außerdem wirkt sich die Messbereichsveränderung (3V konnten im oberen Drittel des Zeigerausschlags gemessen werden) bei 6V und 9V nicht so stark aus, wie wir es uns erwartet hatten. Die Messwerte sind sehr ähnlich.

2 Das Kirchhoffnetzwerk und die Kirchhoff'schen Sätze

2.1 Aufgabenstellung

In dieser Übung soll mithilfe eines geeigneten Netzwerks aus Widerständen die Gültigkeit der Kirchhoff'schen Sätze experimentell nachgewiesen werden. Das Netzwerk besteht neben einer Spannungsquelle und ihrem Innenwiderstand R_i aus 4 zunächst unbekannten Widerständen, die sowohl per Farbcodeauswertung als auch mittels digitalem Multimeter Fluke 87V bestimmt werden. Anschließend werden Strom und Spannung an jedem Widerstand gemessen, und anhand der Messergebnisse die Gültigkeit der Knoten- und Maschenregel, und somit auch der Spannungs- und Stromteilerregel bestätigt.

2.2 Schaltung

Abbildung 3 zeigt die Schaltung des Kirchhoffnetzwerkes, bestehend aus vier Widerständen. Die Schaltung wird von einer Spannungsquelle mit dem Innenwiderstand R_i (1k Ω) mit der Spannung U_q gespeist.

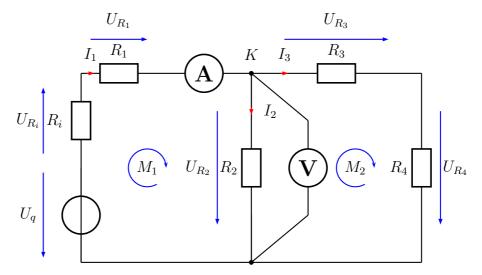


Abbildung 3: Schaltbild des Messaufbaus zum Nachweis der Kirchhoff'schen Sätze.

2.3 Tabellen

Tabelle 3 zeigt die in der Schaltung verwendeten Widerstände, inklusive ihrer Farbcodes sowie die Messergebnisse der Widerstandsmessung mittels digitalem Multimeter.

Bestimmung der Widerstandswerte

	Farbcode (in Worten)	Widerstandswert	Widerstandswert
		aus Farbcode	gemessen
R_1	grau, rot, schwarz(2x), braun, rot	$820~\Omega~\pm1\%~\mathrm{F}~50~\mathrm{ppm/K}$	820 Ω
R_2	gelb, violett, schwarz, braun(2x)	$4.7~\mathrm{k}\Omega~\pm1\%$	$4,69~\mathrm{k}\Omega$
R_3	braun, schwarz(2x), rot, braun	$10 \text{ k}\Omega \pm 1\% \text{ F}$	$10,02~\mathrm{k}\Omega$
R_4	rot, violett, schwarz, braun(2x), rot	$2.7 \text{ k}\Omega \pm 1\% 50 \text{ ppm/K}$	$2.7~\mathrm{k}\Omega$
R_i	braun, schwarz(2x), braun(2x)	1 kΩ ±1% F	996 Ω

Tabelle 3: Bestimmung der Widerstände

Messung der Ströme und Spannungen an den Widerständen

$$U_q = 10 V$$

	$I_{gemessen}$	$U_{gemessen}$
	mA	V
R_1	1,90	1,56
R_2	1,40	6,50
R_3	0,51	5,12
R_4	0,51	1,38
R_i	1,90	1,89

Tabelle 4: Gemessene Ströme und Spannungen an den Widerständen.

Gültigkeit der Kirchhoff'schen Sätze (gemessene Werte)

G	emesse	en	Berechnet		
I_1	I_2	I_3	$\sum I = I_1 - I_2 - I_3$		
mA	mA	mA	mA		
1,90	1,40	0,51	-0,01		

Tabelle 5: Nachweis der Gültigkeit der Knotenregel für den Stromknoten K.

G	Gemessen		Berechnet
U_2	I_3	I_4	$\sum U = -U_2 + U_3 + U_4$
V	V	V	V
6,50	5,12	1,38	0,00

Tabelle 6: Nachweis der Gültigkeit der Maschenregel für die Masche M_2 .

Rechenergebnisse

	$I_{gerechnet}$	$U_{gerechnet}$
	mA	V
R_1	1,90	1,56
R_2	1,39	6,53
R_3	0,51	5,14
R_4	0,51	1,39
R_i	1,90	1,90

Tabelle 7: Rechenergebnisse f. d. Widerstände des Netzwerks.

Ergebnisvergleich

	$I_{gemessen}$	$I_{gerechnet}$	$ I_{gem} - I_{ger} $	$U_{gemessen}$	$U_{gerechnet}$	$ U_{gem} - U_{ger} $
	mA	mA	mA	V	V	V
R_1	1,90	1,90	0	1,56	1,56	0
R_2	1,40	1,39	0,01	6,50	6,53	0,03
R_3	0,51	0,51	0	5,12	5,14	0,02
R_4	0,51	0,51	0	1,38	1,39	0,01
R_i	1,90	1,90	0	1,89	1,90	0,01

Tabelle 8: Vergleich der Messergebnisse mit den errechneten Werten für Ströme und Spannungen im Netzwerk.

$I_{1,gem}$	$I_{2,gem}$	$I_2 = 1_{1,gem} \cdot \frac{R_3 + R_4}{R_2 + R_3 + R_4}$	$\frac{R_3+R_4}{R_2}$	$\frac{I_{2,gem}}{I_{3,gem}}$
mA	mA	mA		
1,90	1,40	1,39	2,70	2,74

Tabelle 9: Nachweis der Gültigkeit der Stromteilerregel für die Ströme I_1 und I_2 am Knoten K.

$U_{2,gem}$	$U_{3,gem}$	$U_3 = U_{2,gem} \cdot \frac{R_3}{R_3 + R_4}$	$\frac{R_3}{R_4}$	$\frac{U_{3,gem}}{U_{4,gem}}$
V	V	V		
6,50	5,12	5,12	3,70	3,71

Tabelle 10: Nachweis der Gültigkeit der Spannungsteilerregel für die Spannungen U_2 und U_3 der Masche M_2 .

2.4 Formeln

Der Gesamtwiderstand zweier in Serie geschalteter Widerstände kann wie folgt berechnet werden:

$$R_{3+4} = R_3 + R_4 \tag{3}$$

Der Gesamtwiderstand zweier parallel geschalteter Widerstände kann wie folgt berechnet werden:

$$R_{2+3+4} = \frac{1}{\frac{1}{R_{3+4}} + \frac{1}{R_2}} \tag{4}$$

Der Strom I_1 kann mithilfe des Ohm'schen Gesetzes aus dem Gesamtwiderstand der Schaltung R_{ges} und der Spannung U_q wie folgt berechnet werden:

$$I_1 = \frac{U_q}{R_{qes}} \tag{5}$$

Die Spannung U_{R_2} kann mithilfe der Kirchhoff'schen Maschenregel aus den Spannungsabfällen U_q , U_{R_1} und U_{R_i} bestimmt werden:

$$U_{R_2} = U_q - U_{R_1} - U_{R_i} \tag{6}$$

Der Strom I_3 kann mithilfe der Kirchhoff'schen Knotenregel aus den Strömen I_1 und I_2 bestimmt werden:

$$I_3 = I_1 - I_2 (7)$$

Alle zu- und abfließenden Ströme an einem Knoten (hier der Knoten K aus Abb. 3) ergeben, vorzeichenrichtig aufsummiert, Null.

$$\sum I = I_1 - I_2 - I_3 = 0 \tag{8}$$

Alle Teilspannungen entlang einer Masche (hier die Masche M_2 aus Abb. 3) ergeben, vorzeichenrichtig aufsummiert, Null (die Durchlaufrichtung ist beliebig wählbar).

$$\sum U = -U_2 + U_3 + U_4 = 0 \tag{9}$$

Mithilfe der Stromteilerregel kann bestimmt werden, in welchem Verhältnis sich der Strom an einem Knoten teilt. Dabei ist der Strom proportional zu den Leitwerten bzw. indirekt proportional zu den Widerstandswerten der einzelnen Zweige.

$$I_2 = I_{1,gem} \cdot \frac{R_3 + R_4}{R_2 + R_3 + R_4} \tag{10}$$

Mithilfe der Spannungsteilerregel kann bestimmt werden, in welchem Verhältnis die Spannungsabfälle in einer Masche stehen. Dabei sind die Spannungsabfälle direkt proportional zu den Widerstandswerten der in Serie geschalteten Widerständen.

$$U_3 = U_{2,gem} \cdot \frac{R_3}{R_3 + R_4} \tag{11}$$

2.5 Berechnungsbeispiele

Der Gesamtwiderstand der in Serie geschalteten Widerstände R_3 und R_4 kann wie folgt berechnet werden (Daten aus Tabelle 3):

$$R_{3+4} = R_3 + R_4 = 10 \cdot 10^3 \,\Omega + 2,7 \cdot 10^3 \,\Omega = 12,7k\Omega \tag{12}$$

Der Gesamtwiderstand zweier parallel geschalteter Widerstände kann wie folgt berechnet werden (Daten aus Tabelle 3 und vorhergehender Rechnung):

$$R_{2+3+4} = \frac{1}{\frac{1}{R_3 + R_4} + \frac{1}{R_2}} = \frac{1}{\frac{1}{10 \cdot 10^3 \Omega + 2, 7 \cdot 10^3 \Omega} + \frac{1}{4, 7 \cdot 10^3 \Omega}} = 3,43k\Omega$$
 (13)

Der Strom I_1 kann mithilfe des Ohm'schen Gesetzes aus dem Gesamtwiderstand der Schaltung R_{ges} und der Spannung U_q (10V) wie folgt berechnet werden (Daten aus vorhergehenden Rechnungen sowie Tabellen 3 und 7):

$$I_1 = \frac{U_q}{R_{qes}} = \frac{U_q}{R_{2+3+4} + R_i + R_1} = \frac{10 V}{5,25k\Omega} = 1,90mA$$
 (14)

Mithilfe der Stromteilerregel kann der Strom I_2 aus dem Gesamtstrom I_1, gem und den Widerstandswerten der einzelnen Zweige berechnet werden. (Daten aus Tabelle 3 f. Widerstände u 4 f. Strom)

$$I_2 = I_{1,gem} \cdot \frac{R_3 + R_4}{R_2 + R_3 + R_4} = 1,90mA \cdot \frac{10k\Omega + 2,7k\Omega}{4,7k\Omega + 10k\Omega + 2,7k\Omega} = 1,39mA$$
 (15)

Der Strom I_3 kann mithilfe der Kirchhoff'schen Knotenregel aus den Strömen I_1 und I_2 bestimmt werden (Daten aus Tabelle 7) (Knoten K):

$$I_3 = I_1 - I_2 = 1,90mA - 1,39mA = 0,51mA$$
 (16)

Der Spannungsabfall U_{R_1} kann mithilfe des Ohm'schen Gesetzes aus R_1 u. I_1 berechnet werden:

$$U_{R_1} = R_1 \cdot I_1 = 820\Omega \cdot 1,90mA = 1,56V \tag{17}$$

Der Spannungsabfall U_{R_i} kann mithilfe des Ohm'schen Gesetzes aus R_i u. I_1 berechnet werden:

$$U_{R_i} = R_i \cdot I_1 = 1000\Omega \cdot 1,90mA = 1,90V \tag{18}$$

Die Spannung U_{R_2} kann mithilfe der Kirchhoff'schen Maschenregel aus den Spannungsabfällen U_q (10V lt. vorhergehenden Angaben), U_{R_1} und U_{R_i} bestimmt werden (Daten aus vorherg. Rechnungen) (Masche M_1):

$$U_{R_2} = U_q - U_{R_1} - U_{R_i} = 10V - 1,56V - 1,90V = 6,53V$$
(19)

Mithilfe der Spannungsteilerregel und der Maschenregel kann aus den Widerstandswerten der Masche und dem Spannungsabfall U_2 , gem der Spannungsabfall U_3 berechnet werden. (Daten aus Tabelle 3 f. Widerstände u vorherg. Rechnungen)

$$U_{R_3} = U_{R_2} \cdot \frac{R_3}{R_3 + R_4} = 6,53V \cdot \frac{10k\Omega}{10k\Omega + 2,7k\Omega} = 5,14V$$
 (20)

Mithilfe der Maschenregel kann aus U_{R_2} und U_{R_3} U_{R_4} bestimmt werden:

$$U_{R_4} = U_{R_2} - U_{R_3} = 6,53V - 5,14V = 1,39V$$
(21)

2.6 Diagramme

Bei dieser Aufgabe mussten keine Diagramme angefertigt werden.

2.7 Geräteverzeichnis

5 Stk. Ohmscher Widerstand $1k\Omega$, 820Ω , $2.7k\Omega$, $4.7k\Omega$, $10k\Omega$.

3 Stk. Kurzschlusskabel.

1 Stk. Analoges Messgerät Unigor 1n (Type 226231).

1 Stk. Digitales Multimeter Fluke 87 V.

1 Stk. IGTE Laborbox (Stecktafel mit integrierter Strom- und Spannungsquelle) Übung 1

2.8 Diskussion

Die Kirchhoff'sche Maschenregel besagt, dass alle Spannungsabfälle in einer Masche ,vorzeichenrichtig aufsummiert, 0 ergeben müssen.

$$\sum_{j=1}^{n} U_j = 0 (22)$$

Die Kirchhoff'sche Knotenregel besagt, dass alle zufließenden und abfließenden Ströme an einem Knoten, vorzeichenrichtig aufsummiert, 0 ergeben müssen.

$$\sum_{j=1}^{n} I_j = 0 (23)$$

Spannungen in einem Spannungsteiler verhalten sich zu den Widerständen direkt proportional - nach dem Ohmschen Gesetz ist der Spannungsabfall bei gleichem Strom bei höherem Widerstand größer.

$$U_{R_1} = U_{ges} \cdot \frac{R_1}{\sum_{j=1}^n R_j} \tag{24}$$

Ströme in einem Stromteiler verhalten sich zu den Widerständen indirekt proportional - nach dem Ohmschen Gesetz fließt bei gleicher Spannung über den höheren Widerstand ein geringerer Strom.

$$I_{R_1} = I_{ges} \cdot \frac{\sum_{j=1}^{n} R_j}{R_1} \tag{25}$$

Anmerkungen zu den Messergebnissen und den Rechenergebnissen im Tabellenabschnitt: Im Großen und Ganzen konnten die Messergebnisse überzeugen und so die Kirchhoff'schen Gesetze und Teilerregeln bestätigen - die Erwartungen der Laborteilnehmer wurden erfüllt. Jedoch:

Es soll angemerkt werden, dass die Messungen mit dem Voltmeter in der Masche 2 mit einem leichten Messfehler behaftet sind, da unglücklicherweise das Amperemeter, welches zu jenem Zeitpunkt noch von der vorherigen stromrichtigen Messung in Masche 2 war, vorher nicht durch ein Kurzschlusskabel ersetzt wurde, und so einen leichten Spannungsabfall lieferte. Das erklärt auch die leicht höheren Spannungen bei den errechneten Spannungen der Widerstände 2,3 und 4 im Vergleich zu den Messdaten und die daraus resultierenden Abweichungen von 0,02-0,04V beim Errechnen der Differenz von U_{ger} und U_{gem} .

3 Überlagerungsprinzip

3.1 Aufgabenstellung

In dieser Aufgabe soll das Helmholtz-Prinzip an einer geeigneten Schaltung experimentell nachgewiesen werden. Es soll zudem gezeigt werden, dass das Helmholtz'sche Überlagerungsprinzip nur für Ströme und Spannungen, aber nicht für Leistungen gilt. (quadratische Relation)

3.2 Schaltung

Abbildung 4 zeigt die Helmholtz-Schaltung mit aktiver Spannungsquelle U_q . Abbildung 5 zeigt die Helmholtz-Schaltung mit aktiver Stromquelle I_q .

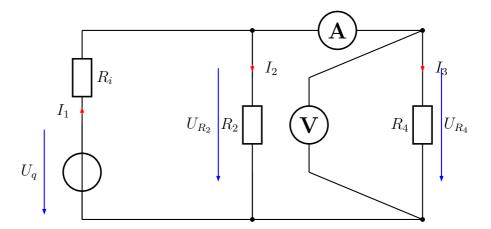


Abbildung 4: Schaltbild des Helmholtz-Netzwerks mit aktiver Spannungsquelle.

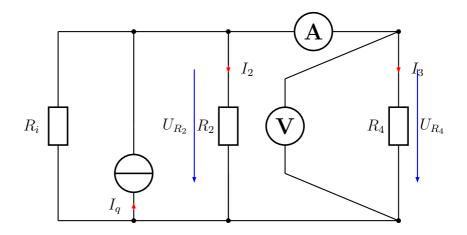


Abbildung 5: Schaltbild des Helmholtz-Netzwerks mit aktiver Stromquelle.

3.3 Tabellen

Tabelle 11 zeigt die an den Quellen eingestellten Werte für die Spannung U_q und den Strom I_q sowie die gemessenen Werte für Spannung U_{R_4} und Strom I_3 mitsamt der daraus errechneten Leistung P_{R_4} . Tabelle 12 zeigt analog dazu die Rechenergebnisse für die analytisch errechneten Werte für Spannung U_{R_4} und Strom I_3 .

Messergebnisse

	Gemessen		Berechnet
	$U_{R_4} = U_4 \mid I_3 \mid$		$P_{R_4} = U_{R_4} \cdot I_3$
	V	mA	mW
Stromquelle aktiv $(I_q = 10mA)$	6,30	2,33	14,64
Spannungsqu. aktiv $(U_q = 10V)$	6,28	2,33	14,60
Beide Quellen aktiv	12,59	4,70	59,17

Tabelle 11: Messergebnisse im Helmholtz-Netzwerk mit versch. Str/Spg.-Quellen.

Rechenergebnisse

	Berechnet		Berechnet
	$U_{R_4} = U_4 \mid I_3$		$P_{R_4} = U_{R_4} \cdot I_3$
	V	mA	mW
Stromquelle aktiv $(I_q = 10mA)$	6,32	2,34	14,79
Spannungsqu. aktiv $(U_q = 10V)$	6,32	2,34	14,79
Beide Quellen aktiv	12,64	4,68	$59,\!15$

Tabelle 12: Rechenergebnisse im Helmholtz-Netzwerk mit versch. Str/Spg.-Quellen.

3.4 Formeln

Die Leistung P errechnet sich aus dem Produkt von Strom und Spannung:

$$P = U \cdot I. \tag{26}$$

Der Widerstand R_{ges} ergibt sich bei I_q aktiv aus dem Kehrwert der Summe der Leitwerte:

$$R_{ges} = \frac{1}{\frac{1}{R_i} + \frac{1}{R_2} + \frac{1}{R_4}} \tag{27}$$

Der Widerstand R_{ges} ergibt sich bei U_q aktiv aus der Summe des Kehrwerts der Summe der Leitwerte und des Innenwiderstandes:

$$R_{ges} = R_i + \frac{1}{\frac{1}{R_2} + \frac{1}{R_4}} \tag{28}$$

Die Spannung U_{ges} ergibt sich bei I_q aktiv durch das Ohmsche Gesetz:

$$U_{ges} = R_{ges} \cdot I_q \tag{29}$$

Der Strom I_{ges} ergibt sich bei U_q aktiv durch das Ohmsche Gesetz:

$$I_{ges} = \frac{U_q}{R_{qes}} \tag{30}$$

Die Spannungen U_{R_3} und U_{R_4} ergeben sich durch die Kirchhoff'schen Gesetze:

$$U_{ges} = U_{R_2} = U_{R_4} (31)$$

bzw.

$$U_q = U_{R_2} = U_{R_4} \tag{32}$$

Der Strom I_3 ergibt sich durch das Ohmsche Gesetz:

$$I_3 = \frac{U_{R_4}}{R_4} \tag{33}$$

Der Strom I_2 ergibt sich durch die Knotenregel:

$$I_2 = I_{ges} - I_3 (34)$$

bzw.

$$I_2 = I_q - I_3 (35)$$

3.5 Berechnungsbeispiele

Die Leistung P errechnet sich aus dem Produkt von Strom und Spannung (Werte aus Tabelle 11):

$$P_{R_4} = U_{R_4} \cdot I_3 = 6,30V \cdot 2,33mA = 13,64mW.$$
 (36)

bei I_q aktiv:

Der Widerstand R_{ges} ergibt sich aus dem Kehrwert der Summe der Leitwerte:

$$R_{ges} = \frac{1}{\frac{1}{R_i} + \frac{1}{R_2} + \frac{1}{R_4}} = \frac{1}{\frac{1}{1000\Omega} + \frac{1}{4700\Omega} + \frac{1}{2700\Omega}} = 631,66\Omega$$
 (37)

Die Spannung U_{ges} ergibt sich durch das Ohmsche Gesetz:

$$U_{ges} = R_{ges} \cdot I_q = 631,66\Omega \cdot 10 \cdot 10^{-3} A = 6,32V$$
 (38)

bei U_q aktiv:

Der Widerstand R_{ges} ergibt sich aus dem Kehrwert der Summe der Leitwerte:

$$R_{ges} = R_i + \frac{1}{\frac{1}{R_2} + \frac{1}{R_4}} = 1000\Omega + \frac{1}{\frac{1}{4700\Omega} + \frac{1}{2700\Omega}} = 2714,86\Omega$$
 (39)

Der Strom I_{ges} ergibt sich durch das Ohmsche Gesetz:

$$I_{ges} = \frac{U_q}{R_{ges}} = \frac{10V}{2714,86\Omega} = 3,68mA \tag{40}$$

Der Strom I_3 ergibt sich durch das Ohmsche Gesetz und die Kirchhoffschen Gesetze:

$$U_{qes} = U_{R_4} \tag{41}$$

bzw.

$$U_q = U_{R_4} \tag{42}$$

$$I_3 = \frac{U_{R_4}}{R_4} = \frac{6,32V}{2700\Omega} = 2,34mA \tag{43}$$

3.6 Diagramme

Bei dieser Aufgabe waren keine Diagramme gefordert.

3.7 Geräteverzeichnis

3 Stk. Ohmscher Widerstand 1 $k\Omega(R_i)$, 2,7 $k\Omega(R_4)$, 4,7 $k\Omega(R_2)$.

3 Stk. Kurzschlusskabel

1 Stk. Analoges Messgerät Unigor 1n (Type 226231).

1 Stk. digitales Multimeter Fluke 87 V.

1 Stk. IGTE Laborbox (Stecktafel mit integrierter Strom- und Spannungsquelle) Übung 1

3.8 Diskussion

Was besagt das Helmholtz-Prinzip?

Sind in einem Netzwerk nur lineare Widerstände und unabhängige Quellen (Stromquellen und/ oder Spannungsquellen) vorhanden, so gilt folgende Beziehung:

"Die Wirkung (Strom oder Spannung) an einer beliebigen Stelle des Netzwerkes, die von allen Quellen hervorgerufen wird, ist gleich der Summe der Wirkungen jeder einzelnen Quelle, wenn zugleich die restlichen Quellen durch ihre idealen Innenwiderstände ersetzt werden." Ideale Spannungsquellen sind daher kurzzuschließen, ideale Stromquellen sind durch einen Leerlauf zu ersetzen."

Das Helmholtz-Prinzip gilt nicht für Leistungen, weil es einen quadratischen, nichtlinearen Zusammenhang mit der Stromstärke gibt :

$$P = U \cdot I = R \cdot I^2 \tag{44}$$

Dieser würde beim Aufsummieren nicht berücksichtigt. Würde ich die Leistungswerte einzeln aufsummieren hätte ich 29mW vs 59mW, wenn beide Quellen aktiv sind - daher keine Übereinstimmung, somit kein Einsatz des Helmholtz-Prinzips bei Leistungen!

Die Messwerte stimmen auch hier sehr gut mit den berechneten Werten überein, was auf einen ordnungsgemäßen Ablauf des Versuches hindeutet.

Graz, am 26. April 2015